Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model.
نویسندگان
چکیده
Many natural systems are subject to seasonal environmental change. As a consequence many species exhibit seasonal changes in their life history parameters--such as a peak in the birth rate in spring. It is important to understand how this seasonal forcing affects the population dynamics. The main way in which seasonal models have been studied is through a two dimensional bifurcation approach. We augment this bifurcation approach with extensive simulation in order to understand the potential solution behaviours for a predator-prey system with a seasonally forced prey growth rate. We consider separately how forcing influences the system when the unforced dynamics have either monotonic decay to the coexistence steady state, or oscillatory decay, or stable limit cycles. The range of behaviour the system can exhibit includes multi-year cycles of different periodicities, parameter ranges with coexisting multi-year cycles of the same or different period as well as quasi-periodicity and chaos. We show that the level of oscillation in the unforced system has a large effect on the range of behaviour when the system is seasonally forced. We discuss how the methods could be extended to understand the dynamics of a wide range of ecological and epidemiological systems that are subject to seasonal changes.
منابع مشابه
The Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model
Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic. In the present paper, some predator-prey models in which two ecologically inte...
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کاملThe Lotka-Volterra Predator-Prey Equations
One may find out the application of mathematics in the areas of ecology, biology, environmental sciences etc. Mathematics is particulary used in the problem of predator-prey known as lotka-Volterra predator-prey equations. Indeed, differential equations is employed very much in many areas of other sciences. However, most of natural problems involve some unknown functions...
متن کاملHow do variations in seasonality affect population cycles?
Seasonality is an important component in many population systems, and factors such as latitude, altitude and proximity to the coastline affect the extent of the seasonal fluctuations. In this paper, we ask how changes in seasonal fluctuations impact on the population cycles. We use the Fennoscandian vole system as a case study, focusing on variations in the length of the breeding season. We use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 67 6-7 شماره
صفحات -
تاریخ انتشار 2013